Skip to the content.

GNNAdvisor: An Efficient Runtime System for GNN Acceleration
on GPUs

Step-1: Environment Setup

There are two ways to setup the environment of GNNAdvisor and baselines.

curl https://get.docker.com | sh \
  && sudo systemctl --now enable docker

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
   && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
   && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update
sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker
docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].

then you need to

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
docker run -it --rm --gpus device=1 -v $PWD/../../:/GNNA osdi-ae:latest /bin/bash

+ Method 2: Setup via conda and pip

1) Install system packages for compiling rabbit reordering (root user required).

2) Install Pytorch environment.

Step-2: Download the graph datasets.

3. Detailed Instructions.

Note

Reference